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Frequency Dependent Krylov Vectors for
Second-Order Damped Systems

Yoon-Gyeoung Sung' and Joey K. Parker'
(Received December /0. /998)

An algorithm for the model reduction of a damped structural dynamics system is developed

by combining parameter matching technique with a spectrum shifting. In the procedure, there is

no complex algebra and no system order increment unlike the conventional eigenvalue computa­

tion method involved with damping effect. By taking starting vectors relevant to actuator and

sensor locations, the effect of excitation and measurement is strategically accounted. With the

selection of loading frequency as a shifting parameter, the proposed algorithm shows more

accurate dynamic response than the existing method with respect to the full-order model. It is

shown that obtaining a reduced-order model should include not only low frequency moments

but also high frequency moments of the full-order system. Two examples are employed to

illustrate the efficacy of the proposed algorithm.
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1. Introduction

One of the main issues in modeling of flexible

structures or any other large-scale system is the

dimensionality of systems. especially those for­

mulated by the finite element method. The

approach can lead to accurate modeling, but a
high order system is obtained. Hence, a model

reduction approach plays an important role for

efficient dynamic analysis. In the model reduction

approach, the selection of a projection basis is

important to the accuracy of the reduced model.

Many authors have investigated basis selection by

eigenmodes, static modes in component mode

synthesis and Krylov vectors (which can be con­

sidered as static modes). Especially, Krylov

vectors have been used in the application to

eigenvalue analysis and to structural dynamics

model reduction problems. Using the Krylov

vectors, several algorithms have been developed,
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such as the Wilson method (Wilson, and Dickens,

1982) and the Lanczos algorithm (Chen and

Taylor, 1988; Nour-Onid and Clough. 1985).

Su and Craig (1991) presented a model reduc­

tion algorithm based on the combination of

Krylov vectors and a parameter matching concept

without destroying the symmetry and physical

meaning of the damped system matrices. Further­

more, the reduced-order model has the valuable

property of parameter matching. However, their

algorithm cannot effectively account for specific

parameters and frequency contents due to the

matching of low frequency modes. This is because

the Krylov sequence (Cook et al.. 1989) con­

verges to the lowest mode shape, As a result, their

method generates vectors that are close to a few

lowest mode shapes. Therefore, their method is

most effective when the external input frequency

is relatively low In practice, many types of exter­
nal inputs have a significant frequency content or

a specific frequency content. It is common that

lower modes are frequently employed as basis

vectors to serve as an effective system model by

normal modes or Krylov vectors. However, both

methods fail to account for the frequency contents

of loadings. Specifically, low frequency matching
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2. Model Order Reduction by
Matching System Parameters

If the system has no pole at the origin, then the

Taylor series expansion of Gi.s) around s=O

yields

2.1 General linear systems
An nth order, linear, time-invariant system is

expressed by

z=Az+Bu, zER n
, uER' (I)

y= Cz. yERm (2)

for which the transfer function C (s) = C (sJ - A)-l

B can be formally expanded in a Larant series

around s = co as

(4)

(3)

=
Cis) =:E - CA-i-1Bs i

i=O

Using the parameter matching method, a model

reduction algorithm was introduced by Vil­

lemagne and Skelton (1987) for an n-th first

order linear time-invariant system. The reduced

-order model is obtained by an oblique projec­

tion approach through high-frequency moments

or low-frequency moments which are obtained by

Laurent or Taylor series expansion of output

frequency response. This reduction approach can

preserve the necessary system parameters. Recent­

ly, Su and Craig (1991) proposed a combined

algorithm of Krylov sequence and low-frequency

matching method. In the following section. the
basic procedure is reviewed.

of structures in civil engineering.

In the following sections, the parameter match­

ing technique with Krylov sequence is first revi­

ewed. Second, the algorithm of frequency depen­

dent Krylov vectors is proposed by incorporating

spectrum shifting based on the reference (Su and

Craig, 1991). Third, the efficiency and accuracy

of the impulse responses and dynamic responses

with regard to harmonic loading is numerically

demonstrated with the application to two truss

structures characterized by closely spaced modes.

Finally, a conclusion has been made.

with Krylov vectors cannot capture specific fre­

quency modes which may strongly influence the

response. Harmonic loads may be, for example,

produced by an earthquake. Skelton and YousulT

(1983) showed that certain higher mode shapes

are important in the application of his modal

reduction method to large flexible structures.

When higher frequencies in loadings predomi­

nate, Rayleigh-Ritz methods may become ineffec­

tive. This is because loadings with a frequency

content tend to excite the mode shapes of systems.

By including the frequency dependent vectors

in the processing of vector generation, the accu­

racy of dynamic analysis is dramatically im­

proved (Joo et al., 1989; Sandridge and Haftka.

1991). Xia and Humar (1992) motivated by the

reference (Joo et al; 1989) present an algorithm

in order to account for the frequency content of

the loading, a parameter that may strongly influ­

ence the response, particularly for loading with a

high frequency content, so that the original Ritz

vectors algorithm is improved in the sense of

selecting more essential modes. However, those

algorithms deal with undamped linear systems

and destroy the symmetry and physical meaning

of the system matrices because it is necessary to

put a second-order matrix dilTerential equation

into first-order form.

A contribution of this paper is a model reduc­

tion algorithm that can account for parameters in

low frequency content as well as in high-fre­

quency content for a general second-order

damped system together with the influence of

actuator and sensor locations. In order to capture

both parameters simultaneously, a spectrum shift­

ing strategy is employed. The spectrum shifting

strategy (Bathe, 1982) has long been used in the

extraction of mode shapes and frequencies. By

utilizing the shifting strategy. both low and high

frequency parameters can be elTectively extracted,

which is the main difference between this method

and the Su and Craig's. In other words. a distin­

guishing feature of this new model reduction

method is to locate a certain frequency parameter

dynamically rather than statically within the

dominant range of frequencies. Furthermore. the

algorithm can be applied to the dynamic analysis
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Using Eq. (16), a Krylov recurrence procedure is

obtained and is described as

{ Q!+1} = [ - K-1C -K-IM]{Q!} (17)
Qj+1 I 0 o:

Q1+1=-WICQ1-K-1iHQ1_1 (IS)

Q'j+l=Qf. (19)

Superscripts d and v denote displacement and

Y(w) 0:=( V+jwW) (-w2M+ jwC+K)-IPU(W)
0:= ( V+jwW) (J +jwK-1C -w2K-1ft,1l-IK-1PU(w)

ce

=L;( V+jwW) (w2K-IM - jwK-1C)iK-1PU(w)
i-=O

={VK-1p+jw(W- VK10K1P+al(VK-1M
+ WK-IC- V(K- 1C)2}K-1p+ ...}. (9)

The low-frequency moments are defined as the

coefficient matrices in the expansion series in Eq.

(9).

In order to construct a reduced-order model

that matches low-frequency moments, it is conve­

nient that the first-order formulation is sought

which is equivalent to Eq. (6).

where z={x, i}T. Now, the system equation is
described by state-space form

z= -lW-1Kz+ M-I?a (13)

y= Vz (14)

Recalling that CA"ts is a low-frequency

moment for a system expressed by Eqs. (I) and

(2). we can describe the low-frequency moments

from the first term in the last Eq, (9) for the

system of Eqs, (13) and (14) as

Ti> V( -il- I j{ l iiJ-Ip
=(-I)iV(j{-IM)Hj{-lp, i=l, Z,. ... (15)

It can be shown that VCR- 1M) 'M-l ? is equal to

the coefficient matrix associated with the (jcu) l-l

term in Eq. (9). For generating the projection

subspace, Eq. (I2) is substituted into Eq. (15).

Tio:=( _1)i[ Vl'V][-I~-IC -~-IMrTK~IPJ (16)

( 10)

(II)

- [C JJ] -; [K OJ
M = ,tl 0' K = 0 - M

?=[~l V=[ V W] (12)

lJi +Kz=Pu
y=Vz

with

zn=A/lZn+Bnu. y=CnZn (5)

where r< n, znERr, A n= TAR. Bn= TB, C»

=CR, and TR=Ir> with Tand R, the left and
right projection matrices. It is shown in Ref.

(Villemagne and Skelton, 1987) that T and R
are chosen such that span [T] =span [(AT)

-PCT, (AT) -P~lCT, ... , (AT) qCT]and span[R]

=span [A -sB. A -sHB, ''', A tBJ with p, q. s. t
;;:: 0 and p+q = s + t, then the red uced -order

model matches p+s low-frequency moments and

q + t high-frequency moments. That is, CnAinBR
=CAiB, for i=-P-s, "', q+t.

2.2 Structural Dynamics Systems
A structural dynamics equation can be de­

scribed by the input-output relation

Mx+Ci:+Kx=Pu (6)

y= Vx+ Wi (7)

where xER n is the displacement vector; uER I

the input vector: yER I1I the output measurement

vector; M, C. and K the mass, damping. and

stiffness matrices, respectively; and V and W the

displacement and velocity sensor distribution

matrices. The damping matrix is assumed to be

symmetric. The frequency response solution of

Eg. (6) is

X(cu) = (K+jcuC-cu2 iln - 1pU(cu) (8)

where X(cu) and U(cu) are the Fourier trans­

forms of x and u. If the system is assumed to have

no rigid-body modes, the output frequency

response can be represented by a Taylor series;

From Eq. (3), we get a set ofsystem parameters

{CAiBli=O, I, ... }, which are termed Markov

parameters or high-frequency moments (Vil­

lemagne and Skelton, 1987). We get another set of

system parameters {<...."A -iBli= L 2, ".}, which are

termed time moments or low-frequency moments

(Villemagne and Skelton, 1987). These two sets

of parameters constitute pieces of system data for

the triple (A, B, C). Villemagne and Skelton

(Villemagne and Skelton, 1987) provide a tool­

box for producing parameter matching reduced

-order models. The reduced-order model is

obtained by an oblique projection approach and

is in the form
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Here, with decomposition and rearrangement, a

recursive formula is proposed without increasing

system order as

[
- K -oC-riM 0 ]{Q1.1}=[C+26M M]{Q11.

o M QY+l J;j 0 QyJ
(25)

where the shifted matrices in both sides remain

symmetric. From the above eigenproblem, an

iteration formula by the inverse iteration tech­

nique with Eq. (17) and (VilJemagne and

Skelton, 1987) is represented as

(24)

(22)Ds> eft-6iW)-liJ

(11 _ 0) [C~~OM

[
- K -sc-e«

. 0

where a represents the shift. It is numerically

convenient that Eq, (21) is expressed by the

inverse iteration formulation which has been used

for eigenvector and eigenvalue computation for

an undamped system. In order to obtain an iter­

ative formulation, the following equation,

z (r) = Qe(A-(f)t (23)

where .It is the eigenvalue and Q the eigenvector,

is substituted into each state variable of z(t) in

Eq. (10). As a basic relation of the vector itera­

tion method (Bathe, 1982), the eigenvalue prob­

lem(Chen and Taylor, 1988) can be formulated

as

Q1,1=[ - K -aC-riA'11-1
{ [ C+2oA'l]Q1H,'1Qj} (26)

QJ'+l = Q1 (27)

It is apparent that vectors taken from the sequence

in Eqs. (26) and (27) can generate efficient

vectors provided 0 is selected to represent the

concerned parameter. With the above formula­

tion. it is beneficial to keep the symmetry of the

system after the spectrum shifting operation and

to reduce numerical computation without using

k. and ifi to precede each sequence. This formula

is used for the generation of frequency dependent

Krylov vectors. The entire algorithm is presented

in Table 1. In the algorithm, starting vectors are
chosen to produce a K -normalized Qnxlsotocess

matrix and a transformed system equation with

3. Frequency Dependent Krylov
Vectors

The algorithm for generating low and high

frequency dependent Krylov vectors is developed

based upon the previous section (Su and Craig,

1991). The Krylov sequence (Cook et al., 1989)

in the structural area is commonly employed for

vector generation for undamped second-order

differential systems. The Krylov sequence is writ­

ten as

velocity portions of the vector, respectively. Eq.

(17) is used recursively for the vector generation

(Su and Craig, 1991). Su and Craig (1991)

claimed that the transformed system equation in

Krylov coordinates shows dynamic spillover.

SUndamped=[r, Dr, tr-, "', Dmr] (20)

where D=K-1M and r is any non-zero vector.

This sequence converges to the lowest mode

shape. As a result, the sequence generates vectors

that are close to the lowest mode shapes. This is

the reason that the Su and Craig method have

only matched low frequency modes. It is not

sufficient to use only low frequency parameters to

account for realistic problems. Therefore, some

high frequency parameters are also necessary and

this deficiency of Krylov sequence should be

resolved. Furthermore, the reduced system no

longer possesses the parameter matching property

if the Krylov vectors generated for the undamped

system are applied to the damped system.

In the following discussion, an efficient set of

Krylov vectors should include shapes that are

close to the mode shapes of the system with

system parameters in the neighborhood of the

predominant system parameters. It is well recog­

nized that a Krylov sequence formed by using a

shifted stiffness matrix converges to an

eigenvector whose eigenvalue is closest to the

shift. Hence, a Krylov sequence with respect to

Eq. (10) is represented by

Sdamped=(q, Dsa, Dia, .... D;;'q] (21)

where q is any non-zero vector (which is com­

monly a static correction vector)
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force and sensor distribution matrices having

nonzero elements only in the first block. The size

of the block can be reduced if the actuator /sensor

location is collocated, since P is the linearly

independent portion of P=[P, V T
• I'V T ,

(M- 1 W T ) j, There are several techniques for the

selection of independent vectors, such as singular

value decomposition or a row-searching method

(Brogan, 1991). The first part of the Krylov

sequence is similar to the Su and Craig method,

but the second part of the Krylov sequence

employs Eqs. (26) and (27) to capture the desir­

ed parameters. The final set of vectors is used for

a system to be reduced. Unlike the first-order

state space formulation for model reduction, we

have a second-order reduced system which is

physically meaningful so that mass, damping, and

Table 1 Algorithm of frequency dependent krylov

vectors.

Operation & Calculation

independent vector selection F=[P, VT
• WT• :W' W(j

Rg=K-'F
Rg=-J'.r'w r

singular value decomposition U.SoU[=svd( (RrI) 'KRgr
first vectors Qt=RgUSA"

Qf=RW.SA"
calculate additional vectors starting with j =2. 3..... k-I

R1= - K-'CQ1- J{'MQf
Rf=Q1

orthogonalization R1=R1- ±Q~'{Wi) TKRf}
1='

Rj'=Rj'- ±Q~'{ iQn rKR'fI
j.e) .

spring matrices are classified. The transformed

system equation is expressed by

QTlvIQ.f -!- QTCQ£ + QTJ(Qi = QTPU (28)

y= VQi + WQ£. (29)

The transformation can be represented as

x=Qi (30)
where Q'lX(SbIOCkSJ is formed from the vectors

generated by the proposed algorithm; x are the

physical coordinates; i are the transformed coor­

dinates. Now, the reduced system can be used for

dynamic analysis of large flexible structures. The

matrices of the transformed system equation are

not diagonalized, but it is efficient in the aspects

of computational speed, system memory,

In the numerical simulation, the final set of

vectors is onhogonalized to ensure the orth­

ogonality between each vector by singular value

decomposition. Of course, this does not change

any results on the eigenvalues and eigenvectors.

4. Application to Plane Truss Models

Numerical examples are presented in order to

compare the accuracy of dynamic responses. The

system model in Fig, I is adopted from Su and

Craig's paper (199 I). The structure consists of 48

degrees of freedom, a force actuator I, and a

displacement sensor d. The structure's geometry

is designed to provide closely spaced eigenvalues.

A formula (Craig, 1981) is used to provide a

generalized proportional damping matrix such

singular value decomposition U;S;UJ=svd{iR1) 'KR11
(J-!-l) th vectors Q1"= R1U,S)'

QJ+l=RJL~Sj2

end
calculate frequency dependent starting with j=k. k+l, .... S

Krylov vectors (FDKV) F=[-K-6C-(lMj
R1=F-'HC+laM]Qf+MQrj
RY=Q1

orthogonalizaticn Ri -= R1- ±Q1( (Q'f) TKR11
j=!

singular value decomposition
(j + I) th vectors

form the s-block projection
matrix

RY= Rj'- ±Qi{(Qn TKR11
1=1

U)S;uJ=svd{ tRY) TKR;}
Q1+1 = R1 L!;S}"
QJ+,=Rj'[~SY2

end

Q-=[Qf, Qf, Qg. .... Q~J Fig. 1

EA=8.0E+1O

Plane truss structure for numerical
comparison.
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Table 2 Eigenvalue comparison between models.

Full-Order System Suand CraigMethod (SuandCraig, 1991) FDKV Method

real imaginary real imaginary real imaginary

-5.8057E-01 1.9343E+Ol -5.8057£-01 1.9343£+01 -5.8058E-OI 1.9344E+OI
-1.7695£+00 5.8958£+01 -1.7695£+00 5.8958£+OJ -1.7699£+00 58973E+OI
-3.05I7E+OO 1.0167E+02
-3.2728E+00 1.0904E+02 -3.2860E+00 1.0935£+02 -33005£+00 1.0964£+02
-4.2244E+00 14075£+02 -4.7513E+00 14370£+02
-4.9120£+00 1.6366E+02 -5.4620E+00 1.5935E+02
-9.2901£+00 1.8557£+02
-1.0217£+01 20409£+02 -9.3623£+00 1.9248£+02
-10249E+01 2.0474£+02
-1.1215£+01 2.2403£+02 -1.2186E+OI 2.2254E+02
-11791 £+01 2.3553£+02 1.6701 E+OI 2.3834£+02 -15969£+01 2.3519£+02
-1.7103E+OI 2.4373£+02 -·15970£+01 2.4244£+02
-1.7309£ +01 2.4666£+02 -1.6423£+01 2.4639E+02
-1.7351 E+OI 2.4727£+02
-1.7470E+Ol 24896E +02
-1.7592£+01 2.5071£+02
-2.2742E-'-01 2.5166£+02
-2.2797£+01 2.5227E+02
-2.3172£+01 2.5643E+02
- 2.3550£ + 0 I 2.6061 E+02
-2.5462£+01 2.8177£+02 -2.6294£+01 2.7912£+02
-3.2988£+01 2.9807£+02
-3.3674£+01 3.0427£+02 -3.0042£+01 31150E+02 -27935E+Ol 3.0860£ +02
-3.5697E+OI 3.2255E+02
-3.7307£+01 3.3709£+02 -3.1795E+OI 3.3348E+02
-3.9020£+01 3.5258£+02
-4.8840£+01 3.7250E+02
-5.5251 E+Ol 4.2140E+02
-6.1027£+01 4.6546E+02
-6.5348£+01 4.9841£+02 -6.2176E+01 4.9064£+02
-70248£+01 5.3578£+02
-·8.7874E +01 5.7920£+02 - 7.2096£+01 5.8949£+02
-8.7909£+01 5.7943E+02
-1.l614E+02 7.6550E+02
-1.2220£+02 80546E+02
-1.2423E -:-02 8.1918E+02
-1.7008£+02 9.8594£+02
-1.8212£ +02 1.0557£+03
-1.8489£+02 1.0717£+03

that modes 1-5 have a 3% damping ratio, modes

6- 10 have a 5% damping ratio, and the remaining

higher order modes have successively higher

damping. A finite element program was written in

FORTRAN for dynamic analysis. The structure

is reduced to 10 degrees of freedom by the Su and

Craig method or by the new algorithm. In the

new reduction procedure, 1 set of vectors is

obtained by the Su and Craig method for load

dependent Krylov vectors and 4 sets obtained by

the FDKV method are generated with an

eigenvalue magnitude of 240 rad/sec as a domi­

nant frequency.
In Table 2, complex eigenvalues are computed

according to both the full-order model and the

reduced-order models. The complex eigenvalues
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Fig. 2 Impulse response: full-order and reduced­
order models.

I-"
f -,
LIS

.\

«f

i

.""

T
)0

ib-'--~'----'>l'----""~-'::'",-~I.<:.-~~.J....

Fig. 4 Plane truss structure for numerical
comparison .

and the reduced-order models by the Su and

Craig method and the FDKY method. During 0.6

second dynamic response, the Su and Craig

method shows high overshoot in the initial stage

and has much error with respect to the full-order

model in fig. 3. However. the fDK V method

shows less error than the Su and Craig method

during 0.7 second simulation in Fig. 3.

As a second example in Fig. 4, the order 20 of

flexible structure is reduced to the 10 degrees of

freedom by the Su and Craig method and the

FDK V method for the noncollocated actuator

and sensor configuration. The proportional

damping formula is chosen as C=O.OIM +0.01

K. In the proposed procedure. I set of vectors is

given by the Su and Craig method and 4 sets.

obtained by the FDKY method with the shifting

parameter I as a dominant frequency, are generat­

ed. In Table 3, the eigenvalues of the full-order

and the reduced-order models are compared. The

impulse responses of the three models are compar­

ed in fig 5. It is seen that the FDK V model and

the full-order model have the same accuracy

while the Su and Craig method is poor in Fig. 6.

As an example with the second plane truss

07

0.6 0.1

FDKV . I
SU&C<llIg

,.,
1:=

0.3 0.4
tlml(SElO/

nz

0.\

..

IO~ 10~

from both reduction methods are closely placed to

the eigenvalues of the full-order model. The

reduced models have eigenvalues corresponding

to actuator and sensor configurations so that

skipped eigenvalues will not take part in dynamic

response. As expected, the Su and Craig method

converges to the lower frequency region, and

generates modes only in the average sense around

eigenvalue with magnitude of 240 tad/sec. How­

ever, the FDKV method shows that precise modes

are located at eigenvalue magnitudes 235 tad/sec

and 242 rad/sec. Higher modes can also be

captured by the FDKV technique with the same

order of the system as Su and Craig's method. It

turns out that the Su and Craig method requires

a larger order than the FDKY method in order to

include higher modes.

In Figs. 2 and 3. the accuracy of the impulse

response is compared for the full-order model

Fig. 3 Impulse response error with respect to
full-order model,

Fig. 5 Impulse response: full-order and reduced­
order models.
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Table 3 Eigenvalue comparison between models.

Full-Order System Su and Craig Method FDKY Method

real imaginary real imaginary real imaginary

-1.7621e-02
-6.7536e-02
-7.2702e-02
- 1.7297e-01
-1.8840e-Ol
-3.3375e-OI
-5.3943e-01
-5.9768e-Ot
-6.7985e-01
-8.069ge-Ol
-9.8344e-Ol
- 1.l658e+OO
- t.t817e+OO
-1.2050e+00
-1.7528e+00
-1.7973e+OO
-2.9362e+OO
-3.0016e+OO
- 3.5316e+OO
-4.0932e+00

1.5887e+ OOi
3.535ge+00i
3.6790e+00i
5.7935e+00i
7.523Ie+OOi
8.1017e+OOi
1.0324e+Oli
1.0871e+01 i
1.1598e+01 i
1.263ge+Ol i

1.3954e+ 01i
l.5192e+01i
l.5295e+Oli
1.5445e+ 0 Ii
1.8614e+01i
1.8848e+Oli
2.4034e+0 Ii
2.4296e+Oli
2.632k;-Oli
1.8300e+0Ii

-1.7621e-02
-6.753ge-02
-8.7245e-02
-1.7372e-Ol
-3.4450e-Ol
-5.5535e-Ol
-1.l388e+OO
-1.6160e+OO
-2.1378e+00
-2.8655e+OO

1.5887e+OOi
3.5360e+OOi
4.0548e+OOi
5.8064e+00i
8.2330e+00i
1.0477e+Oli
l.5016e+O Ii
1.7877e+Oli
2.0542e+01 i
2.3746e+Oli

-1.762Ie-02
-6.7536e-02
- 7.2724e-02
-1.7308e-01
-3.3418e-0I
-4.2476e-Ol
-6.8908e-Ol
- 8.8112e-Ol
-- 2.7154e+00
-2.8488e+OO

1.5887e+OOi
3.535ge+ OOi
3.6796e+00i
5.7954e+00i
8.1070e+OOi
9.1527e+OOi
1.1677e+Oli
J.3208e+Oli
23124e+Oli
2.367Re+Oli

Fig. 6 Impulse response error with respect to
Full-order model.

Fig.7 Responses of sinusoidal input sin (lOt):

full-order and reduced-order models.
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vectors depending on the excitation frequency.

model to harmonic input, sin (I Ot), the shifting

parameter (Jis taken by 10 rad/sec to locate the

dominant frequency of the harmonic input. Of

course, it should avoid the resonance frequency

for the selection of shifting parameter. In Figs. 7

and 8, the dynamic response by Su and Craig
method is shown with large discrepancy with

respect to the full-order model in both transient

and steady state periods. As a result, the FDKV

with the shifting parameter dynamically found the

5. Conclusions

The algorithm of frequency dependent Krylov

vectors (FDKV) is presented for generating low

and high frequency dependent vectors for second

-order damped systems. In the generation proce­

dure, the algorithm produces vectors influenced

by actuator and sensor locations and provides an

efficient method for model reduction of large
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